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The transition state is fundamental to modern theories of reaction dynamics. Although transition-state theory
(TST) has been used mainly in chemical physics, it can be applied to any problem that involves some form
of transformation, including half-scattering events such as ionization. In this paper, we use TST to investigate
the competition between direct and chaotic mechanisms in the ionization of Rydberg atoms in external electric
fields.

1. Introduction

“As we read thePrincipia we feel as we are in an ancient
armory where the weapons are of a gigantic size; and as we
look at them we marvel what manner of man he was who could
use them as a weapon what we can scarcely lift as a burden”.
(Andrade, E. N. da C.Newton and the Science of his Time;
Royal Society of London: London, U.K., 1943.) These words
of the Cambridge scholar William Whewell accurately describe
our appreciation for Bill Miller, and we are honored to contribute
to this Special Issue in a subject of great interest to him, namely,
transition-state theory (TST). Although the use of TST in atomic
physics is still a novelty, we hope to show that TST has useful
insights to contribute even in areas seemingly remote from its
origins.

Recently we exploited the analogy between a unimolecular
reaction1,2 and the ionization of hydrogen in crossed electric
and magnetic fields3,4 to identify, for the first time, a transition
state for the process and to compute the ionization rate based
on the fractal dynamics.5,6 We were guided by modern advances
in the theory of chemical reaction dynamics7-13 which recognize
that classical phase space structures (bottlenecks, turnstiles, etc.)
govern the progress of the reaction.14,15 Identifying these
structures requires techniques from nonlinear dynamics and
chaotic scattering theory.11-13 In this paper, we will apply similar
techniques to the ionization of Rydberg atoms with multielec-
tronic cores in an external electric field, a problem which has
been gaining in popularity recently.16-29 In particular, we will
show how TST can help us clarify the competition between
direct and chaotic ionization in such atoms.

Innovative, sophisticated experimental techniques have re-
cently lead to renewed interest in atoms30,31 or molecules32 in
which an electron is promoted to a high energy state, where it
is only weakly bound to the core and its dynamics are
approximately hydrogenic. These states are typically character-
ized by very large principal quantum numbers (nJ 50),30 and
such atoms (or molecules) are generically said to be in
“Rydberg” states, because the energy levels of the excited
electron are well described by a Rydberg-like formula.30

Rydberg atoms and molecules occupy a special place in the
physical sciences, because their loosely bound electron lives in
that poorly charted territory where the quantum world of the
atom transforms into the classical reality of macroscopic objects.
Rydberg atoms have many exaggerated properties such as huge
dipole moments, and they constitute very convenient, natural
laboratories for the investigation of many physical phenomena
which they display with exceptional clarity. Rydberg electrons
are very weakly bound, and they reside mostly at an immense
distance from the atomic or molecular core, to the point that if
the Rydberg atoms were solid, they would be just about visible
to the naked eye. Laboratory-scale external fields, and even weak
stray electric fields,33 become comparable to the atomic (or
molecular) Coulomb field sensed by the Rydberg electron, and
interesting, dynamical properties, such as quantum chaology,34

can be studied experimentally.
The ionization of a Rydberg atom in external electric fields

resembles a chemical reaction: in a typical unimolecular
reaction,1,2 the molecule is first given sufficient energy so that
it can overcome the barrier to reaction. Some time after the
activation, if energy finds its way into the reactive mode, the
reaction occurs. In the problem of the ionization of Rydberg
atoms, the “activation” is the initial excitation to a state of very
high principal quantum number (n ∼ 50 or larger). Following
state preparation, energy flows into the ionization channel and
the electron is detached. In both systems, a central question
concerns the rate at which the energy migrates into the reactive
(or ionizing) mode. We begin by reviewing TST briefly as it
relates to nonlinear dynamics.

The concept of a transition state is central to the theory of
chemical reaction dynamics.35,36The basic idea, strictly classical
in origin, postulates the existence of a minimal set of states
that all reactive trajectories must pass through and which is never
encountered by any nonreactive trajectories. This set of states
is collectively called the “transition state”.

The notion of a transition state can be traced to the work of
Marcelin37 in 1915. Subsequently, in 1931, Eyring and Polanyi38

quantified the idea of a transition state in the collinear H+ H2

reaction. Their paper, which can be viewed as the origin of
modern theories of chemical reactions, reports the first calcula-
tion of the potential-energy surface of a reaction. Immediately
following the appearance of this work, Wigner39 and others40,41
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developed a variety of very simple, yet extremely useful, theories
of bimolecular reactions, for example, activated complex theory
and TST . During the following decade, further seminal papers
in the development of unimolecular reactions were published.1,2

Again the concept of a transition state played a central role
although these early theories of chemical reactions remained
strictly classical in nature. Quantization was the next major step
in the development of TST.42

Even in the earliest days it was recognized that the transition
state as defined by Eyring and Polanyi was in fact not a surface
of no return and that trajectories can recross this surface many
times43 because of dynamical effects that can result from cross-
terms in the kinetic energy, e.g., dynamical barriers. The
recognition of the complex nature of the dynamics led to the
development of a variational approach41,42,44which considered
the set of all possible transition states and then chose the one
with the minimum flux across it. The variational problem was
solved by demonstrating that the surface of minimum flux, and
hence the transition state, must be an unstable periodic orbit
whose projection into coordinate space connects the two
branches of the relevant equipotentials.45-48 These surfaces are
called periodic orbit dividing surfaces or PODS (as is the
convention, the term PODS is both singular and plural49). The
PODS with the minimum flux is chosen as the transition state.

Although the original idea of a transition state was expressed
as a dividing surface incoordinatespace, it was soon recognized
that in a proper treatment dividing surfaces must separate
volumes corresponding to reactants and products inphase space.
Progress in this direction accelerated after advances in dynamical
systems theory and computing capability. In the mid 1980s,
Davis and co-workers7-9 showed that the partitioning of phase
space can be accomplished using the manifolds50 of the PODS
associated with the transition states. A related approach to the
investigation of the structure of phase space of reactive systems,
which is closer to our point of view here, is that of Ozorio de
Almeida et al.10 Tiyapan and Jaffe´11-13 extended these ideas
considerably and showed that the manifolds of the PODS can
be used to construct an invariant fractal tiling of phase space
and in the simplest case of complex formation (unimolecular
reactions) characterized this fractal structure.

In their study of the Stark ionization of rubidium Rydberg
wave packets, Lankhuijzen and Noordam21,22 observe two
distinct mechanisms. They term these “prompt” and “delayed”
ionization; we prefer the terms direct and chaotic ionization,
by which we mean ionization associated with regular and chaotic
classical dynamics, respectively (for further details, see ref 5).
In our paper, we use TST to investigate these dynamical
mechanisms that lead to the ionization of Rydberg atoms in
external electric fields.

Our paper is organized as follows: In the next section, we
discuss the one-electron model that we use in our numerical
investigation. This model is constructed from hydrogen in an
external electric field by adding an effective core potential. After
the system is regularized, the Hamiltonian takes a particularly
simple form which is readily amenable to analysis. In section
3, we review the role of PODS in the classical theory of
transport. In particular, we focus on the definition of the
transition state for ionization process in terms of the PODS.
The dynamical origins of the two ionization mechanisms are
investigated using standard nonlinear dynamical techniques in
section 4. Here we see that the chaotic ionization is a direct
consequence of the collision of the Rydberg electron with the
core of the alkali metal atom. In the last section, we compare
results for lithium, sodium, potassium, and rubidium. We

observe that the results we obtain for sodium, potassium, and
rubidium are qualitatively the same. Our results for lithium are
remarkably different; the explanation of these differences must
await a more detailed investigation.

2. Stark Effect in Alkali Metals

A discussion of classical field ionization of the alkali metals
should begin by reviewing the electron dynamics in a hydrogen
atom.51 The addition of an electric field, which gives rise to
the Stark effect, leads to the onset of direct ionization of the
hydrogen. Chaotic ionization is observed with the addition of
the core potential. Our approach of starting with the classical
potential of a hydrogen atom and then adding the electric field
and core potential as perturbations provides a clear picture of
the origin of both the direct and chaotic ionization.

2.1. Classical Dynamics of the Hydrogen Atom.The
classical Hamiltonian for a hydrogen atom (in atomic units) is
given by

wherer ) (x2 + y2 + z2)1/2. This system has three degrees of
freedom, and thus, the dynamics are confined to a six-
dimensional phase space. In the traditional treatment of the
dynamics, the three independent constants of the motion can
be taken as the total energy, the total angular momentum, and
the projection of the angular momentum on a space-fixed axis.
A classical trajectory is confined to a three-dimensional subspace
within the six-dimensional phase space. The topology of this
subspace is a three-dimensional torus, and the subspace is often
called an invariant torus. Additional symmetries, usually referred
to as the hidden symmetries, exist and are related to the Runge-
Lenz vector.52 The existence of these hidden symmetries is
revealed by the existence of additional constants of the motion
which, in turn, further restrict the dynamics. These additional
constraints conspire to make all classical trajectories periodic
orbits, that is, confined to one-dimensional subspaces on the
invariant tori.

In the traditional study of the electron dynamics in hydrogen,
one separates the variables to reduce the problem from three
degrees of freedom to three one-degree-of-freedom problems.
As a consequence of hidden symmetries, the hydrogen atom
can be separated in several different sets of variables. The choice
of which set of variables to use depends on the application. In
the present study, the semiparabolic variables are the most
convenient.

In the hydrogen atom, the electron is bound to the nucleus
for all negative energies. The classical trajectories (which are
periodic orbits) lie in a plane and are ellipses. The geometrical
properties of the periodic orbits depend on the values of the
constants of the motion. The size of the orbits depends on the
principal action (which corresponds to the principal quantum
number), the plane of the orbit is determined by the projection
of the total angular momentum on a space-fixed axis, the
orientation of the ellipse within the plane depends on the
Runge-Lenz vector, and the eccentricity of the ellipse depends
on the total angular momentum. The periodic orbit becomes a
circle as the angular momentum approaches its maximum value.
As the angular momentum approaches zero, the periodic orbit
reduces to a straight line passing through the nucleus.

2.2. Stark Effect in the Hydrogen Atom.Placing a hydrogen
atom in an electric field has important consequences for the
dynamics of the electron. For the purposes of the present
discussion, the most important of these is that the ionization

H ) 1
2
(px

2 + py
2 + pz

2) - 1
r

(1)

2784 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Jafféand Uzer



threshold is lowered. In other words, if a highly excited but
bound hydrogen atom is placed in an electric field, it may ionize.

The classical Hamiltonian for a hydrogen atom in a static
electric field is given by (in atomic units)

where thez axis is chosen in the direction of the electric field
and E is the strength of the electric field in atomic units of
E0 ) e5me

2/p4 ) 5.14 × 1011 V/m. The introduction of the
electric field destroys some of the constants of the motion. Three
independent constants of the motion remain (and no additional
hidden symmetries), and the dynamics are confined to three-
dimensional invariant tori. We take the total energy to be the
first constant of the motion. To identify the other two constants
of the motion, we will first transform the Hamiltonian from
Cartesian into cylindrical coordinates and then into semipara-
bolic coordinates.51 This canonical transformation is given by

The transformed Hamiltonian is

wherer ) (F2 + z2)1/2 and where we have dropped the primes.
The Hamiltonian does not depend on the angleæ (which is an
ignorable coordinate), and thuspæ is a constant of the motion,
namely, the projection of the total angular momentum on thez
axis defined by the electric field; we will label itlz.

Next we transform from cylindrical into semiparabolic
coordinates. The canonical transformation to semiparabolic
coordinates is given by

and the transformed Hamiltonian is

Next we define a new Hamiltonian; we do this by multiplying
both side of eq 6 by (u2 + V2) and then rearranging the terms.53

This yields

where we have definedω ) (-2H)1/2. Observe that the new
Hamiltonian isnot equal to the energy but rather is a constant,

i.e., K ) 2. The variable conjugate to the new Hamiltonian,
which is a time-like variable, is defined by53

We can separate the new Hamiltonian into two parts, each
depending on one of the variables and its conjugate momentum:

The resulting two constants of the motion are, however, not
independent because the new Hamiltonian is a constant. We
define the third dependent constant of motion as

In the zero-field limit, the Hamiltonian of eq 9 reduces to the
sum of two identical harmonic oscillators with a centrifugal
barrier at the origin. The harmonic frequency is proportional to
the square root of the total energy (this reduction is only valid
for negative energies). The electric field introduces quartic terms
with opposite signs into both harmonic oscillators. In theV
degree of freedom, the quartic term is positive. As the electric
field is increased, the outer wall becomes steeper (see Figure
1), and this in turn increases the frequency of the oscillator. On
the other hand, because of the negative sign of the quartic term
for the u degree of freedom, the potential is always negative
for largeu, and it is in this degree of freedom that the system
can ionize (Figure 2). The height of the barrier to ionization
decreases as the strength of the electric field increases. If the
height of the barrier is greater than 2, then ionization is
classically forbidden. Although the requirement that the barrier
height be less than 2 is a necessary condition for ionization, it
is not sufficient. In addition, we must also require that the third
constant of the motion be greater than the barrier height. In
these circumstances, the system will exhibit direct ionization.
Contour plots of the two-dimensional effective potential are
shown in Figure 3a for semiparabolic coordinates and in Figure
3b for polar coordinates.
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Figure 1. Potential energy in theV degree of freedom for hydrogen
in an electric field. The four curves correspond to different electric
field strengths in atomic units: (a)E ) 0.0, (b) E ) 1.327× 10-7,
(c) E ) 2.645× 10-7, (d) E ) 3.891× 10-7.
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2.3. Stark Effect in Alkali Metal Atoms. The introduction
of an effective potential to model the influence of the core
electrons has a significant impact on the dynamics of the outer
electron. In particular, a chaotic component is introduced into
the ionization. The classical Hamiltonian for an alkali metal
atom in a static electric field is given by (in atomic units)

where

where the constants are given in Table 1.54 HereZ is the nuclear
charge and theR’s are optimized numerically so as to reproduce
the field free energy levels and, hence, the quantum defects of
the for the alkali metal atoms.

Using the same procedure as discussed above for hydrogen
we obtain the following new Hamiltonian (in semiparabolic
coordinates) for an alkali metal atom in an electric field:

wherer ) 1/2(u2 + V2). The effect of the core potential is to
couple the two quartic oscillators.

It is instructive to compare the effective potentials of hydrogen
and potassium. With the exception of the immediate vicinity
of the core, these two potentials are identical. Expansion of the
core region of the potentials for hydrogen and potassium are
shown in semiparabolic coordinates in Figure 4 and in polar
coordinates in Figure 5. Clearly, the morphology of the potential-
energy surface is changed by the addition of the core potential.

The potential-energy surface for hydrogen has a single minimum
and a single saddle point. The minimum corresponds to the
bottom of the Coulombic well, and the saddle point sits on the
barrier between the bound and ionized regions. This is clearly
seen in Figure 3. The introduction of the core potential results
in an additional minimum and saddle. The minimum lies interior
to the core, and the saddle point lies on a barrier that separates
the core well from the Coulombic well. These can be clearly
seen in Figures 4b and 5b. The other alkali metal potentials
have the same morphology as seen here for potassium; the
differences are the depth and position of the core well and the
height and position of the barrier separating the core well from
the Coulombic well.

In summary, the potential that we use to model the ionization
of alkali metal atoms in an electric field is constructed by adding
a core potential and an electric field to the potential of hydrogen.
The core terms only affect the potential in the immediate region
of the core. The electric field has minimal influence in this

Figure 2. Potential energy in theu degree of freedom (ionization mode)
for hydrogen in an electric field. The four curves correspond to different
electric field strengths in atomic units: (a)E ) 0.0, (b)E ) 1.327×
10-7, (c) E ) 2.645× 10-7, (d) E ) 3.891× 10-7. The dashed line is
the ionization threshold.

TABLE 1: Parameters for the Effective Potential Modeling
of the Cores of Lithium, Sodium, Potassium, and Rubidiuma

Z R1 R2 R3 Z R1 R2 R3

Li 3 3.310 3.310 3.310 K 19 3.474 10.590 1.725
Na 11 7.902 23.510 2.688 Rb 37 3.41 10.098 1.611

a See ref 54 and eq 11.
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Figure 3. Potential-energy surface for hydrogen (ω ) 1/21 =
0.047 619 0,lz ) 1) in two different coordinate systems (a) semipara-
bolic and (b) cylindrical. The two PODS that occur for hydrogen are
also shown. The PODS corresponding to the ionization transition state
passes through the cross, which shows the position of the saddle point.
The second PODS, which we use to construct our surfaces of sections,
passes through the solid circle that shows the position of the minimum
of the Coulomb well.
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region. On the other hand, the electric field has significant
impact at a large radius, opening up a channel for ionization.
In this regime, the core potential has negligible impact.

3. Transport in Hamiltonian Systems

In chemistry, one wishes to determine the rate at which a
system passes from one region of configuration space, charac-
terized by reactant configurations, to another, characterized by
product configurations. The standard approach is to define a
surface that partitions the configuration space into two distinct
regions, the first associated with reactants and the second with
the products. Once this transition state is defined, the transport
problem can be formulated in terms of the directional flux across
the surface. The actual definition of this surface matters greatly.
Consider the evolution of the system as characterized by a
particular trajectory. Clearly, if this trajectory crosses the
transition state more than once, then it will contribute to the
flux more than once. This will lead to an overestimation of the
directional flux (known as the “recrossing” problem). Ideally,
one wishes to define the transition state such that it is a surface
of no return, that is, such that no trajectory crosses it more than
once, a particularly difficult task in diffusion phenomena.55

It was in an effort to minimize the recrossing problem that
the variational definition of the transition state was formulated.
In this formulation, one considers all possible transition states,
that is, all surfaces in configuration space which partition the

space into two regions. The transition state is then chosen as
the surface with minimum directional flow across it. As
mentioned previously, for systems with two degrees of freedom,
the transition state is the projection of a periodic orbit into the
configuration space.48 In order for this projection to partition
the coordinate space, it must touch the classical boundaries of
the configuration space at two different points. In general, there
is more than one of these surfaces, which Pechukas named
PODS. The PODS with the minimum directional flux is chosen
as the transition state. The solution of the variational problem
for more than two degrees of freedom remains an open question.

Although the rate problem is defined in terms of transport
between two different regions of configuration space, the correct
formulation of the flow must be in phase space. This im-
mediately raises the question of what role the PODS play in
phase space. Their role depends on their stability: The dynamics
in the immediate vicinity of a stable PODS will be confined to
invariant tori and, as a consequence, will cross the transition
state an infinite number of times. In other words, the PODS
forms an elliptical center of order. Clearly, a stable PODS cannot
be the transition state. On the other hand, an unstable PODS
possesses stable and unstable manifolds which partition the
energy shell. Consider, for example, the stable manifold. All
of the trajectories interior to this manifold will cross the PODS,
whereas those exterior to the manifold will not cross the PODS.
Thus, the flow in phase space bifurcates into two streams when
it encounters the hyperbolic centers characteristic of unstable
PODS. In general, the transition state corresponds to the unstable
(hyperbolic) PODS with the minimum directional flux.

The presence of more than a one PODS in a dynamical system
has important consequences for the transport properties. These
are most clearly illustrated by considering the well-studied

Figure 4. Expansion of the potential-energy surfaces of (a) hydrogen
and (b) potassium at the core of the atom in semiparabolic coordinates.
Comparing these two figures reveals the differences between the
potential of hydrogen and those of the alkali metals. The well due to
the effective core potential is clearly revealed in b. Also seen in this
figure is the PODS corresponding to the transition state separating the
core well from the Coulomb well. The cross in this figure shows the
location of the saddle point between the two wells.

Figure 5. Same as Figure 4 except in cylindrical coordinates.
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collinear atom-diatom reaction H+ H2.9,36 In this example, a
potential barrier separates the reaction and product valleys. For
low-energy collisions, this system has a single PODS that sits
on top of the potential barrier. It is unstable and corresponds to
the transition state. As the collision energy is increased,
additional PODS appear at saddle-center bifurcations.50 At such
bifurcations, two new PODS are born out of nothing, one stable
and the other unstable. Because of the symmetry of the system,
the two saddle-center bifurcations occur at the same energy on
either side of the original PODS. Immediately above this energy
there are five PODS. Three of which are unstable, and two
which are stable. The sequence along the reaction coordinate
is unstable, stable, unstable, stable, and unstable. The two outer
unstable PODS sit on top of dynamical (as opposed to potential)
barriers. The two stable PODS correspond to the periodic motion
that is trapped between the outer dynamical barrier and the
central potential barrier. In other words, the system is trapped
in an effective well. In the simplest theories of chemical
reactions, one would take the last of the PODS, that is, the one
furthest out in the product channel, as the transition state.
However, more realistic theories will recognize that the three
unstable PODS partition configuration space into four separate
regions, and that the rate problem will involve the transport
between these four regions.

In the second section, we introduced the Hamiltonian systems
that we use to model the Stark ionization of alkali metals. The
identification and characterization of the PODS for these systems
is simple and straightforward. To find the PODS we consider
the set of trajectories which initially are confined to theK ) 2
equipotential as obtained from eq 13. We propagate these
trajectories forward in time and determine their next intersection
with the Poincare´ surface of section defined bypV ) 0 and
p̆V g 0.56 This surface of section is particularly useful because
the line defined bypu ) 0 is the equipotential. Thus, trajectories
that intersect this surface of section withpu ) 0 intersect both
branches of the equipotentials and therefore correspond to
PODS.

For the pure Coulomb case (hydrogen), there are two PODS.
These are shown in Figure 3. The first sits on top of the barrier
to ionization and corresponds to the ionization transition state.
It is unstable. The second PODS is stable and sits at the bottom
of the Coulombic well. In the next section, we will use this
PODS to construct surfaces of section.

With the introduction of the core potential, two additional
PODS make their appearance. The first of these is unstable and
sits on top of the barrier between the Coulombic and the core
wells. This PODS is shown in Figures 4b and 5b. The last PODS
is initially stable and sits in the core well. It is important to
observe that the two PODS associated with the pure coulomb
case occur in the region of coordinate space that is unaffected
by the core potential and thus are virtually identical for hydrogen
and the alkali metals. (With great care, numerical differences
can be observed between the stable PODS. However, these
differences are so minimal that no consequences are observed.
We were unable to observe analogous differences in the unstable
PODS.) In the next section, we will use these PODS to
investigate the phase space flow and to illustrate the origin of
the chaotic ionization in the Stark ionization of the alkali metals.
Details of the operational aspects of our calculation can be found
in our publication on the transition state in atomic physics.5

4. Chaotic vs Direct Ionization

The field ionization of hydrogen proceeds by a direct
mechanism: once the system has been excited with enough

energy in the ionization mode, it ionizes immediately. On the
other hand, the field ionization of the alkali metals can proceed
by either of two mechanisms: a direct mechanism analogous
to that of hydrogen and an indirect or chaotic mechanism. In
this section, we will present the results of our numerical study
of the classical transport involved in ionization alkali metals
which clearly illustrates the origin of the second mechanism.
The basic difference between these two mechanisms lies in the
redistribution of the internal energy. In the direct mechanism,
the system is excited in such a manner that there is sufficient
energy in the ionization channel and ionization can occur without
redistribution of the excitation, as a result the system ionizes
immediately. On the other hand, the chaotic mechanism requires
the redistribution of the energy. That is, following the initial
excitation, the energy is not in a mode that will led to ionization.
In order for ionization to occur, the energy must be redistributed.
This can only happen through a collision of the electron with
the core.

It is also useful to make the comparison between direct and
chaotic ionization in the half-scattering problem and direct and
chaotic scattering in the full-scattering problem. In the full-
scattering problem, trajectories corresponding to direct scattering
events are characterized by a single inner turning point, whereas
trajectories corresponding to chaotic scattering will have many
inner turning points. In other words, for direct scattering
dynamics, a full set of local constants of the motion (i.e., one
for each degree of freedom) can be defined, and thus, redistribu-
tion of energy between the modes will not occur. For chaotic
scattering events, a full set of local constants of the motion
cannot be defined, and redistribution of the energy will occur.
As a consequence, complexes are formed. In the half-scattering
problem, the situation is the same. The dynamics associated
with direct ionization is characterized by the existence of a full
set of local constants of the motion, whereas the dynamics
associated with chaotic ionization do not possess a full set of
local constants of the motion. The difference between these two
phenomena lies in the initial conditions. For the full-scattering
problem, the system is initialized prior to the collision, whereas
in the half-scattering problem, the system is initialized in the
middle of the collision. Thus, chaotic (direct) ionization in the
half-scattering problem corresponds to chaotic (direct) scattering
in the full-scattering problem.

Our approach to investigating the ionization mechanism is
to first identify the configurations that will ionize within the
next period.5 We define the period in terms of the original
physical variables. We have chosen to investigate the dynamics
for a single energy (H ) -1/882 = -0.001 133 786 8,ω ) 1/21

= 0.047 619 0) forlz ) 1 and for an electric field ofE ) 3.891
× 10-7 atomic units. Once we have identified these configura-
tions, we will investigate their prior dynamical history. To
identify the configurations that will ionize within the next period
we consider the surface of section defined by the stable PODS
lying at the bottom of the Coulomb well (the curve nearu ) 5
in Figure 3a). All classical trajectories that cross the ionization
transition state must cross this PODS immediately prior to
crossing of the transition state. By “immediately prior”, we mean
that the classical trajectory will not encounter any classical
turning points in the period of time between the crossing of the
two PODS. To identify these configurations we follow the stable
manifold backward in time until it crosses the surface of section
PODS. The intersection of the surface of section and the stable
manifold will be a closed curve which is shown in Figure 6.
The outer closed curve seen in this figure is the classical
boundary of the surface of section. All classically allowed
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configurations must lie within this curve. The inner closed curve
is the last intersection of the stable manifold of the PODS
corresponding to the ionization transition state with the surface
of section. All of the configurations lying within this curve will
ionize within the next period. The property of being within this
curve is both a necessary and sufficient condition for immediate
ionization. The vast majority of the configurations within the
classically allowed region of the surface of section will
eventually ionize. It is only those within the inner curve that
will ionize immediately. We now investigate the dynamical
histories of the configurations that lie within this closed curve.

The configurations within the inner closed curve in Figure 6
ionize within the next period. To identify the configurations
which correspond to direct ionization, we consider the unstable
manifold of the transition state PODS. The first intersection of
this manifold with the surface of section is shown in Figure 7.
The configurations that lie within this curve were captured by
the ionic core within the previous period. Also shown here is
the classical boundary of the surface of section.

The configurations that correspond direct ionization are those
that lie within both the first intersection of the unstable manifold
of the transition state PODS and the last intersection of the stable
manifold of the transition state PODS. These two intersections
are superimposed in Figure 8. The configurations in the shaded
region correspond to direct ionization. The trajectories also
correspond to direct scattering. They encounter a single inner
turning point and no outer turning points.

It remains to identify the dynamical character of the con-
figurations that ionize within the next period but whose
mechanism of ionization is not direct. To characterize these
configurations, consider the PODS that lies on top of the barrier
between the core well and the Coulomb well. Follow the
unstable manifold of this PODS forward in time until it intersects
the surface of section. This yields a closed curve. The
configurations interior to this curve correspond to configurations
that have just escaped from the core well, that is, that have just
suffered a collision with the core. This curve is shown in Figure
9 together with the curve obtained from the last intersection of
the stable manifold of the transition state PODS. The region
interior to both of these curves (shaded) is the configurations
that ionize immediately following a collision with the core.

The dynamical origins of the configurations that will ionize
within the next period are shown in Figure 10. The outer curve
in this figure is the last intersection of the stable manifold of
the transition state PODS with our surface of section. Of the
two shaded areas, the one labeled D corresponds to configura-
tions which ionize via the direct mechanism and the other
(labeled C) corresponds to configurations that ionize via chaotic
mechanism following a collision with the core. The region
separating these two shaded areas will also ionize via a chaotic
mechanism. Many details of the dynamical histories of these
configurations remain to be investigated. We have observed that
many of these configurations do suffer from a collision with
the core prior to ionization; however, the ionization does not

Figure 6. Surface of section for potassium. The outer curve is the
boundary of the classically allowed region. The inner curve is the last
intersection of the stable manifold of the PODS corresponding to the
ionization transition state. The area interior to the inner curve represents
the configuration that will ionize within the next period.

Figure 7. Surface of section for potassium. The outer curve is the
boundary of the classically allowed region. The inner curve is the first
intersection of the unstable manifold of the PODS corresponding to
the ionization transition state. The area interior to inner curve represent
the configurations that have been captured by the potassium ion in the
previous period.

Figure 8. Surface of section for potassium. We show the first
intersection of the unstable manifold and the last intersection of the
stable manifold of the ionization PODS. The shaded area is interior to
both of these intersections and corresponds to the configurations that
ionize via the direct mechanism.

Figure 9. Surface of section for potassium. We show the first
intersection of the unstable manifold of the PODS separating the core
well from the Coulomb well superimposed with the last intersection
of the stable manifold of the ionization PODS. The shaded area
corresponds to the configurations which ionize immediately following
a collision with the core, that is, via the chaotic mechanism.

Direct and Chaotic Ionization J. Phys. Chem. A, Vol. 105, No. 12, 20012789



occur immediately following the collision but rather after one
or more periods following the collisions with the core.

5. Discussion

We have investigated the two dynamical mechanisms that
lead to the ionization of Rydberg electrons in highly excited
alkali metal atoms. The first of these is the direct mechanism
where the atomic system is excited in such a manner that the
Rydberg electron has sufficient energy in the ionization mode
and can ionize immediately. In the full scattering problem, it
corresponds to direct scattering.

The second mechanism requires collisions with the core. Here
the atomic system is excited in such a manner that the Rydberg
electron does not have sufficient energy in the ionization mode,
and the energy of the system must be redistributed for ionization
to occur which then takes place through collisions with the core.
In examining Figure 9, it is clear that only a small portion of
the collisions leads to a effective redistribution of the energy,
that is, the majority of the collisions result in a redistribution
of the energy that does not lead to ionization. These configura-
tions will eventually ionize, but the vast majority of them will
require at least another collision with the core. To this point
we have presented results for potassium, although we have also
examined the dynamics for lithium, sodium, and rubidium.
These results are shown in Figure 10. The results for sodium
and rubidium are qualitatively similar to the potassium results,
the sole difference being the relative proportion of the config-
uration that ionize via the chaotic versus the direct mechanism.
Reasonably, deeper core wells support more of the chaotic
mechanism. It is remarkable that, although lithium also has a
core well, it does not appear to support a PODS (transition state)
separating it from the Coulomb well. In other words, the

Rydberg electron cannot be trapped within the core well. This
is very different from the behavior observed in the other three
alkali metals that we investigated. To unravel and understand
this behavior will require additional numerical investigations,
which are currently underway, and will be reported in a future
publication.
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